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N O N S T E A D Y  F L O W S  O F  V I S C O P L A S T I C  F L U I D S  A T  

T H E  I N I T I A L  S E C T I O N S  O F  P L A N E  C H A N N E L S  

Z .  P .  S h u l ' m a n  a n d  E .  A .  Z a l ' t s g e n d l e r  UDC 532.135 

The p rob l e m  is fo rmula ted  and the method of solving in ternal  p rob l ems  of rheodynamics  of 
nonsteady flows of v i scop las t i c  fluids is proposed.  

Nonsteady motions of v i scop las t i c  media  a re  of cons iderab le  in t e re s t  in connection with invest igat ions 
of technological  p r o c e s s e s  occu r r ing  under  dynamic  loading. A number  of a r t i c l e s  a r e  devoted to an analysis  
of the rheodynamics  of nonsteady fl~)ws on spat ia l ly  s teady sec t ions ,  a review of which is given in [1]. The 
initial  sect ions  fo r  s teady flow of v i scop las t i c  fluids w e r e  cons idered  in [2-5]. Invest igat ions of nonsteady 
flows at  initial  sec t ions  of channels have so f a r  not been c a r r i e d  out. 

We cons ider  the flow of a fluid in a plane channel (Fig. 1). The veloci ty  of the fluid at  the inlet  is con- 
s tant  over  the c r o s s  sect ion and equal to V. F r o m  phys ica l  cons idera t ions  the en t i re  flow region can be divided 
into two regions :  a zone of shear ing  flow, adjoining the wall  of the channel (5 < y ~ h), and a "quasisol id"  core ,  
where  the veloci ty  is constant  (0 -<y -< 5). We should note that  the veloci ty  of the quasisol id  core U(x) v a r i e s  
along the channel  axis .  Under such conditions we can use  the modif ied model  of a v i scop las t i c  fluid, which 
for  r -< r 0 exhibi ts  c reep ,  i .e . ,  slow flow with high v iscos i ty .  Then,  the nonuniqueness of the veloci ty  field 
in the t r a n s v e r s e  d i rec t ion can be neglected;  in this case ,  however ,  the model  admits  the dependence of U on 
the longitudinal coordinate .  

The equations of motion in the bounda ry - l aye r  approximat ion  a r e  

p - + u  ....... + v  - 02u 

Ox Ox Og z ' 

ao (~ < y <<. h) Ou - -  = O, 
+ o,j 

(i) 

(2) 

OU | (0 y~O OU \ Op To p - ~ - ~ + u  . . . . . . . .  / 
ax Ox 5 (3) 

(an invest igat ion was c a r r i e d  out for  the l inear  model  of a v i seop las t i c  Shvedov -B ingham medium).  

Equation (3) fo r  a quas isol id  core  con t r ibu tes  the t e r m  ~-0/5. I t  indica tes  that  the s t r e s s e s  on the  boundary  
of the quas isol id  co re  a re  equal to r 0. In [2] fo r  the s t e ady - s t a t e  p rob lem in the zone of quas isol id  mot ion,  
the ShiUer approximat ion  was a s s um ed  to be val id:  

U OU 1 dp 
d--x- = p dx (4) 

In our  opinion, neglect ing the t e r m  r0/5 can lead to s izab le  e r r o r s  in the solution. 

Let  the medium be at  r e s t  for  t =~ 0, and for  t > 0 let  there  be a flow with a constant  flow ra te .  The ini-  
t ial  and boundary conditions of the p r o b l e m  a re  the following: 
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Fig, 1. Flow diagram. 

u(o, x, y ) = o ,  u(t,  x, h)=o, 

u(t, O, y ) = V ,  Ou(t, x, 6) = O  
u ( t ,  x ,  8)  =.: U. Oy 

Furthermore,  the following integral condition is satisfied. 
h 

P S u d y - - Q .  
0 

Introduction of the dimensionless variables and parameters 

W t t  �9 _ _ _ _  
t 

h 

I L  

R e  ~ 

x Y 6 '  
= T '  ,1 = T '  h 

v W'=  U zo 
- V '  ' i ; ' '  ~ . . . . .  pv ,  ' 

pith p, p 
I~ P V~ ' 

where V = Q/ph, leads to the problem (4)-(6) after algebraic transformations to (the pr imes are dropped) 

o~ 

Ot 

o . . ~ +  o op + I 

0~_~_ O~ = 0  ( 8 < r i l l ) ,  
o~ on 

oie o w  _ oo s (o ~< n ~<6), 

(5) 

(6) 

(7) 

(8) 

w(o, ~, n ) =  o, o~(t, r~+ 6) = o, 
011 

w (t, O, ~1)= 1, 
w( t ,  ~., ~) = o, 

wCt, ~, 0 = ~ (t, t), 
t 

.t"~ = 1. 
0 

C9) 

(z 0) 

There are serious mathematical difficulties associated with the exact solution of the problem (8)-(10). 
Therefore,  in the present work we apply the approximate integral method. The velocity profile in the boundary 
layer is approximated by a second-order parabola, which, with account of the constancy of the velocity in the 
quasisolid core, yields 

1.,<,, [,_ 
1---~-~- / J (6< 'q~1) ,  w(i, ~, ~i)= (11) 
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Fig.  2. Dependence  of  the quant i ty  w on the longi tudinal  c o o r d i -  
nate in the s t e a d y - s t a t e  r e g i m e  (I) and fo r  t /Re = 10 -5 (II) (a); 
change in w in the nons teady  r e g i m e  (b): 1) s = 1; 2) 5; 3) 10. 

In t eg ra t ion  of the f i r s t  equat ion of  s y s t e m  (8) a c r o s s  the boundary  l a y e r  with account  of  r e l a t ion  (11) and 
e l imina t ion  of the p r e s s u r e  leads  to 

~_~ OW 1 - - 6  s ( 1 - - 6 )  2W 1 - - 6 0 W  W 06 + W ( 1 - - 6 )  OW 2 iV ~_06 -F W--  ~- (12) 
3 ot 3 ot 0~ 15 0~ 0~ 3 a (] - -  6) Re 

The in t eg ra l  ba lance  of  m a s s  (9) enab les  us to f o r m u l a t e  the r e l a t ion  between the ve loc i ty  of  the q u a s i -  
sol id  core  and the width of the s h e a r  zone 

3 
W = - -  (13) 

2 + 6  

We use  Eq. (13) to e l imina te  the ve loc i ty  W f r o m  (12), a r r i v i n g  at a f i r s t - o r d e r  d i f fe ren t ia l  equat ion  in the 
coord ina te  of the boundary  of  the zone of s h e a r  flow 

3 06 39 - -  216 06 6 s (I - -  6) 
(2 -+- 6) 2 0t ~- 5 (2 -}- 6) a 0 ~  ---- (1 - -  &) (2 + 6) Re - -  6 (14) 

F r o m  phys i ca l  c o n s i d e r a t i o n s  the init ial  condi t ions  

6 (0, ~) = 0, 6 (t, 0) = 0 (15) 

follow. 

T h e r e  is i n t e r e s t  in ana lyz ing  the l imi t ing  case  of the p r o b l e m  - flow of a Newtonian  fluid s t ab i l i zed  with 
r e s p e c t  to ~ and t. 

In this ca se  the Shi l ler  app rox ima t ion  (4) gives  s i zab l e  e r r o r s  only n e a r  the inlet  to  the channel ,  i . e , ,  
f o r  s m a l l  ~. In the r eg ion  of  s t ab i l i zed  f low,  the e r r o r s  in the solut ion a r e  v e r y  g r e a t ,  s ince  Eq. (4), in the 
l imi t ing  case  fo r  ~ 7> 1, gives  a z e r o  value  fo r  the p r e s s u r e  grad ien t .  In the given s c h e m e  we use  a m o d i f i c a -  
t ion of  the Shi l ler  fo rmula t ion .  F o r  s teady  flow of a v i s c o p l a s t i c  f luid,  f r o m  Eq. (14) it fol lows that  

6 s(l  - -  6) 
= ( 1 6 )  

(1 ~ 6) (2 + 6)Re 6 

F o r  sma l l  s the fol lowing a p p r o x i m a t i o n  is va l id :  

6 = As. (17) 

F r o m  (16) and (17), by neg lec t ing  t e r m s  with high o r d e r s  of  s m a l l n e s s  it fo l lows tha t  

A = Re/3. (18) 

F r o m  Eqs .  (17) and (18) and the th i rd  equa t ion  of sys tem (8) it fo l lows tha t  f o r  the reg ion  of s tab i l i zed  flow fo r  
sma l l  s 

dp 3 
-- d~ --  Re (19) 

This  e x p r e s s i o n  fo r  the p r e s s u r e  g rad ien t  is obta ined a l so  f r o m  the d i r e c t  solut ion of  the p r o b l e m  for  the 
s t ab i l i zed  flow of a Newtonian  fluid. T h u s ,  if for : the  g iven  fo rmu la t i on  the l imi t ing  t r ans i t i on  is c a r r i e d  out 
not  on the leve l  of the ini t ial  p r o b l e m  (14)-(15),  but a f t e r  ob ta in ing  the solut ion,  then we can obtain the c o r r e c t  
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Fig. 3. Dependence of the length of 
the initial section and the time for 
achieving a steady-state regime on 
the plasticity parameter s. 

solution within the framework of the Shiller formulation and for the region of large }. This is connected with 
the singularity of the perturbations with respect to thegarameter  s. 

Solution of the problem {14)-(15) was carried out by the method of characteristics. The system of ordi- 
nary differential equations corresponding to Eq. (14) is 

(2 + 8) ~ dt 5 (2 + @" d~ d8 
3 3 9 -  218 6 s(l -- 8) (20) 

(I --  8) (2 + 8) Re 

Introduction of the new variables ~0 = (i -6) 2, s' = sRe enables us to eliminate Re from system (20). 
Then for the steady-state flow regime, i,e., for the region near the inlet, the thickness of the boundary layer 
is determined from the solution of the problem (the primes are dropped) 

d~ 10(3_ 1/~)3 ( 6 so~ ) 
d ~ / R e -  18-}-21m 3--~]/~ 1 - - ~ '  co(O)=O, (21) 

and for the regime of pure nonsteady flow (the region far from the inlet) 

de0 2(3_]/~0)2 ( __6]/ s0~ ) (22) 
dt/Re = 3 3 ~ 1 1/~ , o~(0)=0, 

Certain results of the numerical calculations are represented in Figs. 2 and 3. An increase in the plastic- 
ity parameter  s in the stationary regime leads to a sharp decrease in the quantity r which equals the square 
of the width of the zone of shear flow (Fig. 2a). In the regime of nonsteady flow for small time of the process 
the effect of the plastic properties is insignificant (Fig. 2b). However, in proportion to the increase in the 
flow the effect of the plastic properties becomes sizable also for a region of the channel sufficiently far from 
the inlet, i .e. ,  at points where flow that is steady with respect to the longitudinal coordinate is realized. 

The effect of the plasticity parameter on the time for achieving a steady-state regime and the length of 
the initial reaction is determined. In this case, the flow was assumed to be stabilized (with respect to the 
temporal and spatial var iables)when the thickness of the boundary layer 1 -5  =~f~ attains 990/0 of its steady- 
state value. The intensification of the plastic properties leads to a decrease both in the time for achieving 
the steady-state regime and also in the value of the initial section, where the rate of decrease is especially 
significant for small values of s (Fig. 3). 

.x, y 
U, V 

P 
P 

h 
5 

N O T A T I O N  

are the dimensional coordinates; 
are the dimensional velocity components; 
is the pressure;  
is the density; 
is the plastic viscosity; 
is the half-width of the channel; 
is the coordinate of the boundary of the shear zone; 
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is the dimensional velocity of the "quasisolid" core; 
is the yield s t ress ;  
is the dimensional velocity at the inlet; 
is the flow rate; 
are the dimensionless coordinates; 
are the dimensionless velocity components; 
is the plasticity parameter ;  
is the Reynolds number; 
is the dimensionless velocity of the "quasisolid" core. 
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T H E R M A L  I N T E R A C T I O N  B E T W E E N  GAS L I N E  

AND F R O Z E N  S O I L S  

B. L .  K r i v o s h e i n  and  M. Y u n u s o v  UDC 536.244 

The art icle examines the numerical solution of the problem of heat exchange during the flow of 
gas through an underground pipeline taking into account the phase transitions in the soil under 
various cooling regimes of the gas. 

Investigations of the thermal regimes of pipelines running through f rozen  soil are dealt with in many 
works [1-6]. These works give most attention to the investigation of the thermal fields of the soil, while the 
temperature  of the pumped medium is taken as constant. 

The present  work examines the two-dimensional problem of the change of gas along the pipeline and 
in t ime, taking into account the dynamics of heat exchange with the environment and of phase transitions in 
the soil. 

The examined problem includes two groups of equations. The f i rs t  expresses the laws of conserva-  
tion for a gas moving in the gas pipe, and with the usually adopted assumptions [7], it can change to the form 

ft-L~ T'+ 1---Mt+Mx=--(lnw):"w P~=--(z~176 ~--~o w2+ gsin@expM" (1) 

We adopt the following boundary conditions: 

Tf~=o = Ti(x), T[.=o = Tz(t); P[t=o = P,(x), (2) 

Ptx=o=P2(t), O~x~L, O~t~tf ,  
The equations of the second group describe the distribution of the temperature field of the soil around 

the pipeline [9, 11] 
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